Venolymphatic Diseases and Inflammation

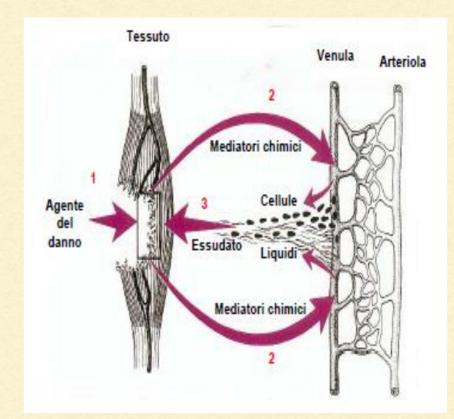
(Anti-inflammatory effects of compression therapy: the state-of-art - Cinderella role for Compression?)

Head of Clinical Biochemistry and Molecular Genetic Labs Department of Biomolecular Sciences University "Carlo Bo" of Urbino - Italy

Inflammation

Defense mechanism which is activated in response to traumas, tissue alterations

Sequence of biological events, which occur in response to a harmful non-specific stimulus, aimed to:


- Dilute, Neutralize, Destroy the harmful agent
- Reduce the tissue damage to the minimum
- Prepare organism to combat the pathogenic agent
- Prepare the inflammed area for the repair and Initiate the repair pathways

Mechanisms of Inflammation

The damaged tissue (1) releases chemical mediators (2) which diffuse towards sorrounding blood vessels, inducing:

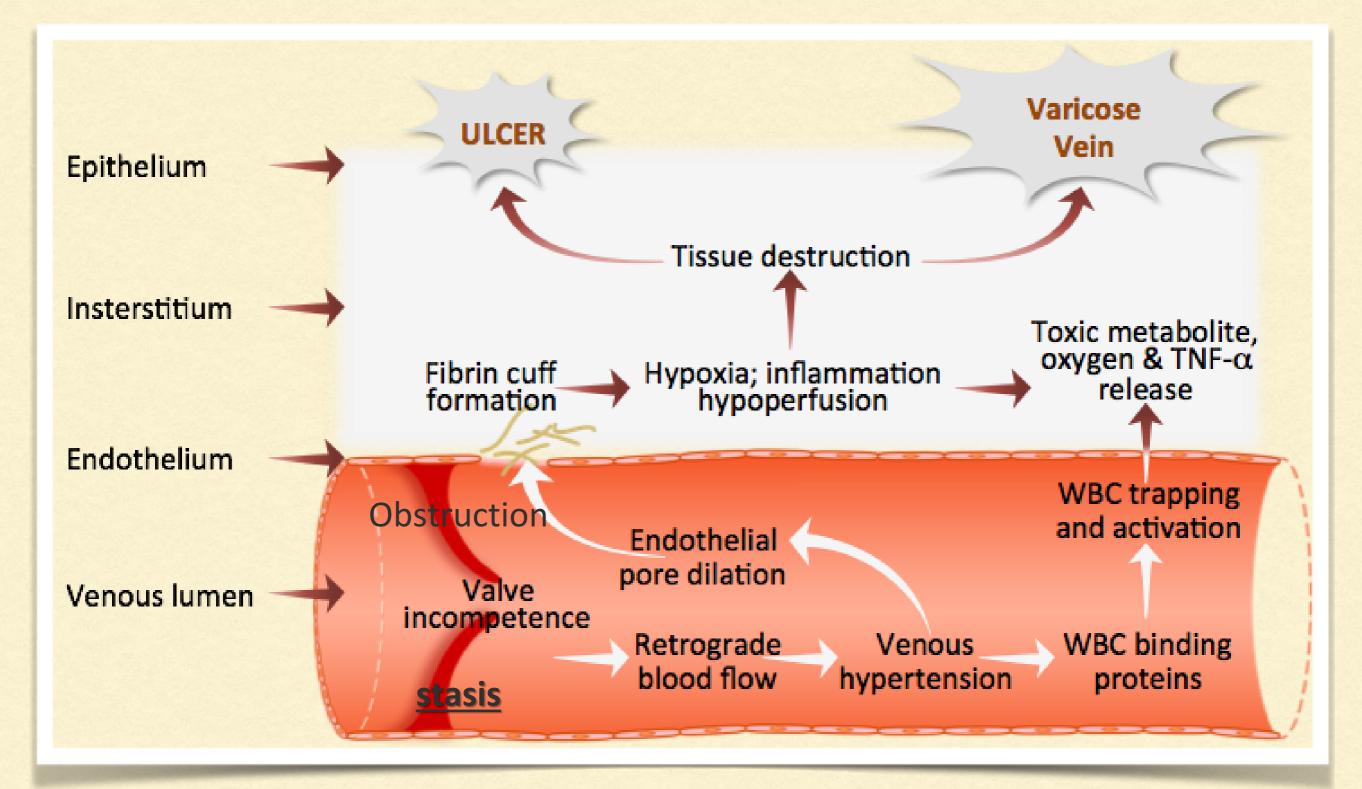
Vessel reaction
Tissue reaction

rubor (redness), tumor (swelling) calor (heat), dolor (pain), functio laesa (altered function)

INFLAMMAGING

Chronic low grade cellular inflammation

The root of all degenerative chronic diseases (and of venous and lymphatic diseases as well)

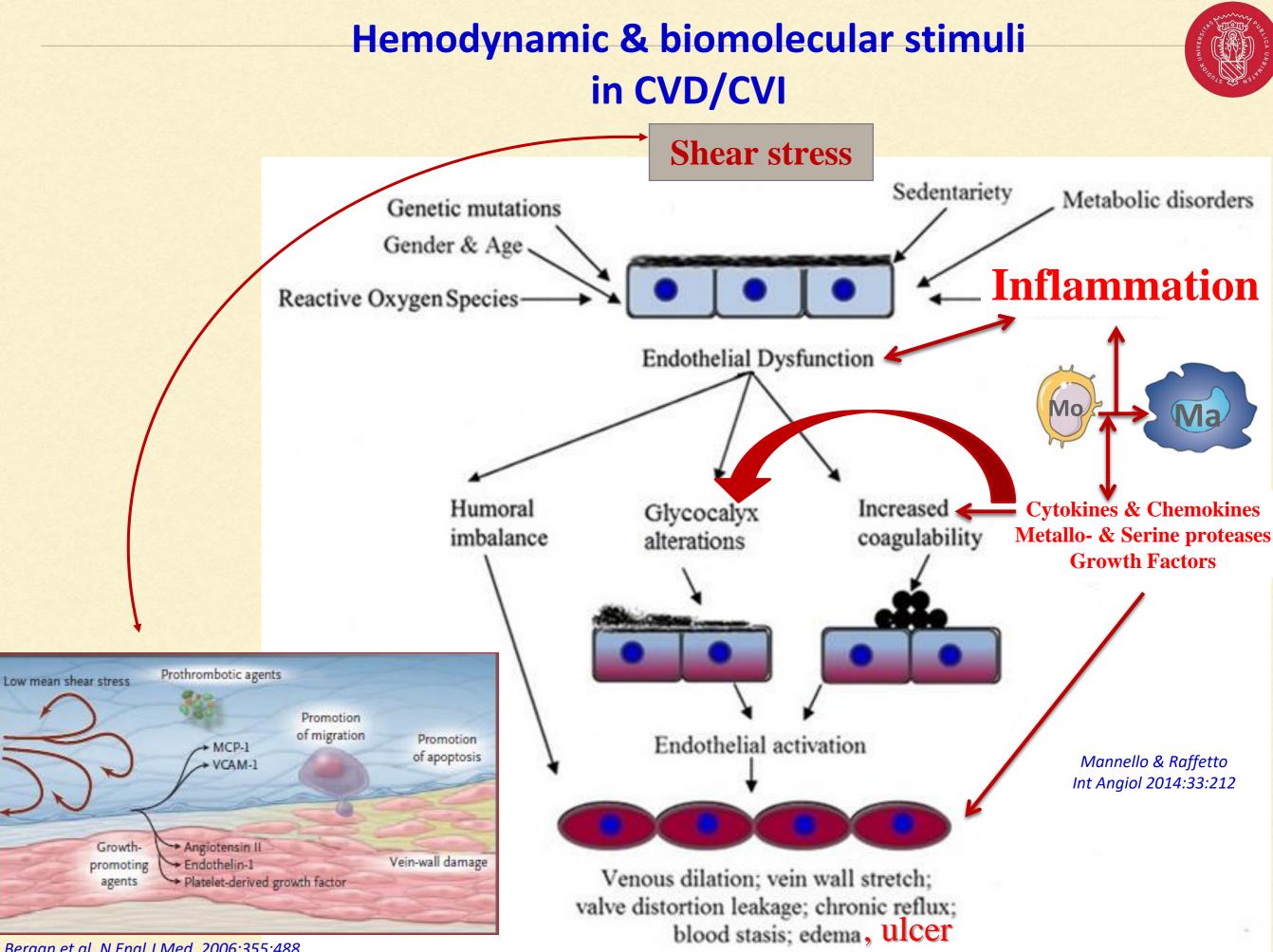


The surprising link between INFLAMMATION and HEART ATTACKS, CANCER, ALZHEIMER'S and other diseases What you can do to fight it

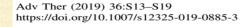
without the All Andrews (1) and

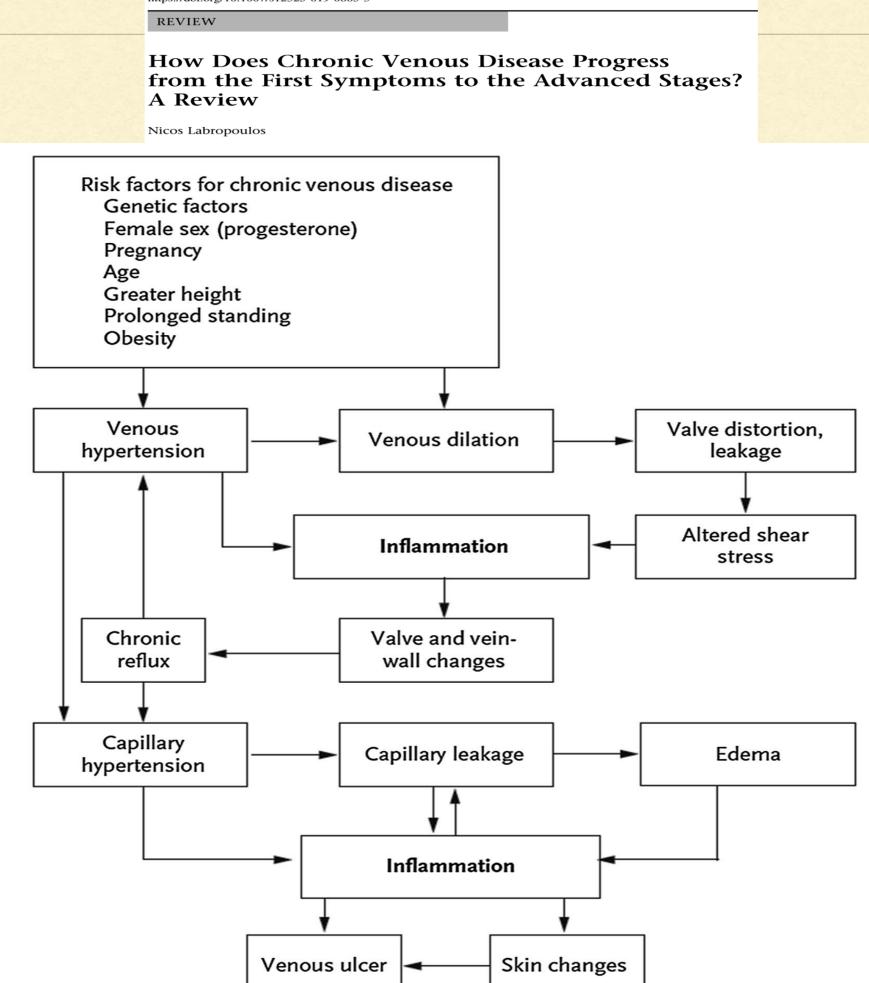
Progression of chronic venous disease

White cell trapping hypothesis


Reduced blood flow on standing

Reduced shear rate in microcirculation favours white cell margination


Capillary plugging and heterogeneity of perfusion result in hypoxia White cell activation Release of free radicals, proteolytic enzymes, cytokines and chemotactic substances


Tissue damage

Moyses et al, Int J Microcirc Clin Exp 1987;

Bergan et al, N Engl J Med. 2006;355:488

The Lymphatics and the Inflammatory Response: Lessons Learned from Human Lymphedema Stanley G. Rockson. Lymphatic Research and Biology. September 2013, 11(3): 117-120

Am J Physiol Heart Circ Physiol 306: H1426–H1434, 2014.First published March 14, 2014; doi:10.1152/ajpheart.01019.2013.

IL-6 regulates adipose deposition and homeostasis in lymphedema

Daniel A. Cuzzone,¹ Evan S. Weitman,¹ Nicholas J. Albano,¹ Swapna Ghanta,¹ Ira L. Savetsky,¹ Jason C. Gardenier,¹ Walter J. Joseph,¹ Jeremy S. Torrisi,¹ Jacqueline F. Bromberg,² Waldemar L. Olszewski,³ Stanley G. Rockson,⁴ and Babak J. Mehrara¹

Excess plasma proteins as a cause of chronic inflammation and lymphoedema: Quantitative electron microscopy March 1981:229–242 M. Gaffney, J. R. Casley-Smith

PLOS ONE 2016

RESEARCH ARTICLE

Lipidomic Profiling of Adipose Tissue Reveals an Inflammatory Signature in Cancer-Related and Primary Lymphedema

Lisa M. Sedger^{1*}*, Dedreia L. Tull², Malcolm J. McConville², David P. De Souza², Thusitha W. T. Rupasinghe², Spencer J. Williams^{2,3}, Saravanan Dayalan², Daniel Lanzer⁴, Helen Mackie⁵, Thomas C. Lam⁵, John Boyages^{1,5}

Wound Rep Reg (2008) 16 642-648

Multiplexed analysis of matrix metalloproteinases in leg ulcer tissue of patients with chronic venous insufficiency before and after compression therapy

Stephanie K. Beidler, MD; Christelle D. Douillet, PhD; Daniel F. Berndt, MS; Blair A. Keagy, MD; Preston B. Rich, MD; William A. Marston, MD

Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC

	Table2. MMP levels in ulcer tissue before and after 4 weeks of high-strength compression therapy (expressed as pg/μg of protein)						
	MMP	Pre-treatment ulcer (n-29)	Post-treatment percent ulcer (n-29)	Change (%)	<i>p-</i> value		
Collagenase	MMP1	54.7 ± 54.6	44.4±48.7	↓ 19	NS		
Stromelysin	MMP2	75.7 ± 38	66.3 ± 32	↓ 12	NS		
	MMP3	7.3 ± 6.8	4.9 ± 5.9	1 33	< 0.05		
Neutrophil collagenase	MMP7	0.66 ± 0.67	0.60 ± 0.8	13 J	NS		
Gelatinase B	MMP8	184 ± 131	120 ± 120	1 34	< 0.05		
	MMP9	525 ± 404	367 ±291	1 30	< 0.05		
	MMP12	0.15 ± 0.17	0.14 ± 0.26	↓ 2	NS		
	MMP13	4.5 ± 6	5.0 ± 4.5	† 11	NS		

Percent Change, percent change in pretreatment MMP level after 4 weeks of compression treatment.

NS, not significant; MMP, matrix metalloproteinases.

Wound Rep Reg (2008) 16 642-648

Table 4. Gene expression of select MMP and inhibitors

	Gene	Tissue type	Relative quotient [†] and SD
(MMP1	Healthy	0.52
		Pretreatment ulcer	5,159 ± 2,060*
		Posttreatment ulcer	$3,455 \pm 761$
	MMP2	Healthy	0.75
		Pretreatment ulcer	21.9 ± 1.7
		Posttreatment ulcer	2.95 ± 0.09
	ММРЗ	Healthy	1.93
		Pretreatment ulcer	2,257 ± 587*
		Posttreatment ulcer	$1,113 \pm 506$
	MMP8	Healthy	1.89
		Pretreatment ulcer	470 ± 249
		Posttreatment ulcer	256 ± 46
	MMP9	Healthy	0.68
		Pretreatment ulcer	404 ± 163*
		Posttreatment ulcer	182 ± 32
	TIMP1	Healthy	2.4
		Pretreatment ulcer	303 ± 251
		Posttreatment ulcer	50.3 ± 7.5
	TIMP2	Healthy	1.1
		Pretreatment ulcer	11.7 ± 0.8
		Posttreatment ulcer	4.02 ± 0.07

... compression therapy results in a reduction of the pro-inflammatory environment characterizing chronic venous ulcers, and ulcer healing is associated with resolution of specific elevated levels of protease expression.

(J Vasc Surg 2009;49:1013-20.)

Inflammatory cytokine levels in chronic venous insufficiency ulcer tissue before and after compression therapy

Stephanie K. Beidler, MD, Christelle D. Douillet, PhD, Daniel F. Berndt, MS, Blair A. Keagy, MD, Preston B. Rich, MD, and William A. Marston, MD, Chapel Hill, NC

Table V: Cytokines demonstrating significant differences in ulcer tissue before compression compared to ulcer tissue after 4 weeks of compression therapy

		Before Therapy		After Therapy			
	Cytokines	Mean	(SE)	Mean	(SE)	F-Statistic	P-Value
	Pro IL-1α	0.89	(0.31)	0.28	(0.04)	4.40	0.045
	Pro IL-1β	0.17	(0.05)	0.03	(0.01)	8.54	0.007
	Pro IL-6	1.27	(0.31)	0.62	(0.15)	6.94	0.013
Chemo	kine IL-8	15.18	(4)	3.80	(0.87)	7.06	0.013
	ProIL-12p40	1.65	(0.31)	0.85	(0.14)	6.58	0.016
	G-CSF	0.27	(0.05)	0.14	(0.03)	4.63	0.04
	GM-CSF	0.07	(0.01)	0.02	(0.01)	12.41	0.001
	<mark>Pro</mark> IFN-γ	0.27	(0.05)	0.14	(0.03)	8.94	0.006
	Pro TNF-α	0.02	(0.01)	0.01	(0)	4.18	0.05
	<mark>GF</mark> TGF-β1	0.24	(0.02)	0.34	(0.04)	5.14	0.031

(J Vasc Surg 2009;49:1013-20.)

Table VI : Cytokines displaying significantly different protein levels in rapid (healed > 40%) compared to delayed (healed < 40%) healers.

	Healed > 40%		Healed < 40%			
Cytokines	Mean	SD	Mean	SD	Compression	P-Value
IL-1a	1.43	2.3	0.35	0.30	Before	0.02
IL-1β	0.26	0.34	0.08	0.14	Before	0.03
IFN-γ	0.42	0.25	0.12	0.20	Before	0.001
IL-12p40	2.24	1.8	0.93	1.2	Before	0.01
GM-CSF	0.11	0.08	0.04	0.04	Before	0.02
IL-1 Ra [*]	25.3	18.6	15	13.5	After	0.02

CONCLUSION:

CVI ulcer healing is associated with a pro-inflammatory environment prior to treatment that reflects metabolically active peri-wound tissue which has the potential to heal. Treatment with compression therapy results in healing that is coupled with *reduced pro-inflammatory cytokine* levels and *higher levels of the anti-inflammatory cytokine*

Conclusions

- Several biophysical pathways (e.g. changes in shear stress and venous hypertension) lead to an inflammatory state which is typical of CVI
- Lymphedema IS a chronic inflammatory degenerative disease
- Compression therapy results in an improvement of

CVI and lymphedema, which is an expression of peculiar modulation of inflammatory mediators and remodelling proteinases (the inflammatory

cascade)

Thanks for your attention